
Microprogrammed Control
 Control Unit

 Initiate sequences of microoperations. The no. of micro operations in the systems
are finite.

» The control function that specifies a microoperation is a binary variable. When it is in
one state the corresponding microoperation is executed. The opposote state does not
change the state of registers.

» Control signal (that specify microoperations) in a bus-organized system are
 groups of bits that select the paths in multiplexers, decoders, and arithmetic logic units

 Two major types of Control Unit
» Hardwired Control :

 The control logic is implemented with gates, F/Fs, decoders, and other digital circuits
 + Fast operation, - Wiring change(if the design has to be modified)

» Microprogrammed Control :
 The control information is stored in a control memory, and the control memory is programmed

to initiate the required sequence of microoperations
 + Any required change can be done by updating the microprogram in control memory,

- Slow operation

 Control Word: control unit initiates a series of microoperations. during any time
certain microoperations are initiated while others are idle.
 The control variables at any given time can be represented by a string of 1’s and

0’s is called control word.
 Microprogrammed Control Unit

 A control unit whose binary control variables are stored in memory (control
memory).

 Microinstruction : Each Word in Control Memory contains within it a microinstruction.
 The microinstruction specifies one or more microoperations

 Microprogram
 A sequence of microinstruction

» Dynamic microprogramming : Control Memory = RAM
 RAM can be used for writing (to change a writable control memory)
 Microprogram is loaded initially from an auxiliary memory such as a magnetic disk

» Static microprogramming : Control Memory = ROM
 Control words in ROM are made permanent during the hardware production.

 Microprogrammed control Organization :

 1) Control Memory: A memory is part of a control unit.
» Computer Memory

 Main Memory : for storing user program (Machine instruction/data)
 Control Memory : for storing microprogram that can not be altered.
 The microprogram consist of Microinstruction

 2) Control Address Register
» Specify the address of the microinstruction

 3) Sequencer (= Next Address Generator)
» Determine the address sequence that is read from control memory
» Next address of the next microinstruction can be specified several way depending on the

sequencer input

External
input

Control
Word

Next address
generator(Seq
uencer)

Control
address
register

Control
memory
(ROM)

Control
data
register

Next address Information

 4) Control Data Register (= Pipeline Register)
» Hold the present microinstruction while the next add. Is computed & read from control memory
» Allows the execution of the microoperations specified by the control word simultaneously with the

generation of the next microinstruction. This requires two phase clock, with one clock applied to add.
Register and other to data register.

 Address Sequencing:
Microinstructions are stored in control memory in groups, with each group specifies a routine. The hardware that controls

the address sequencing of the control memory must be able of sequencing the microinstruction with a routine and be
able to branch from one routine to another.

An initial address is loaded into the control address register when power is turned on.this address is the address of the first
microinstruction that activates the fetch routine. After the end of fetch routine, the instruction is in the instruction
register of the computer.

The control memory next must goes through the routine that determines the effective address of the operand. After
computing the effective address the address of the operand is available in the memory address register.

The next step is to generate the microoperations that execute the instruction fetched from memory. The microoperation
steps to be generated in processor registers depend upon the operation code part of instruction.

Each instruction has its own microprogram routine stored in a given location of the control memory.

The transformation from the instruction code bits to an address in the control memory where the routine is located is called
as Mapping.

After the execution of the instruction control must return to the fetch routine.
 Address Sequencing Capabilities :

 1) Incrementing of the control address register
 2) Unconditional branch or conditional branch, depending on status bit conditions
 3) Mapping process (bits of the instruction address for control memory)
 4) A facility for subroutine return

I n s t r u c t i o n c o d e

M a p p i n g
l o g i c

M u l t i p l e x e r s

C o n t r o l a d d r e s s r e g i s t e r
(C A R)

C o n t r o l m e m o r y

I n c r e m e n t e r

S u b r o u t i n e
r e g i s e r
(S B R)

B r a n c h
l o g i c

Status
bits

Clock

select
MUX

Select a status
bit

Branch address

Microoperations

   

Selection of address for control memory :
Multiplexer

 CAR Increment

 JMP/CALL

 Mapping

 Subroutine Return

CAR : Control Address Register
»CAR receive the address from 4 different paths

1) Incrementer

2) Branch address from

control memory

3) Mapping Logic

4) SBR : Subroutine Register

SBR : Subroutine Register
»Return Address can not be stored in ROM

»Return Address for a subroutine is stored in SBR

Conditional Branching
Special bits: Status conditions are special bits in the system that provide parameter
information such as carry-out of an adder, sign bit of number, mode bits of an
instruction, input /output status condition.

Information in these bits can be tested and actions initiated based on their condition;
whether their value is 1 or 0.

The status bits together with the field in the microinstruction that specifies a branch
address, control the conditional branch decisions generated in the branch logic.

Branch Logic: branch logic is used to test the specified condition and branch to the
indicated address if the condition is met; otherwise the address register is
incremented.this can be implemented with the help of multiplexer.

Ex. Let there are eight status bit conditions in the system. Three bits in the
microinstruction are used to specify one of eight status bits. If the selected status bit is
in the 1 state the output of the multiplexer is 1, otherwise 0. The 1 output in the
multiplexer generates a control signal to transfer the branch address from the
microinstruction into the control address register otherwise address register to be
incremented.

The unconditional branch microinstruction can be implemented by loading the branch
address from control memory into control address register.

MAPPING OF INSTRUCTIONS TO MICROROUTINES
Mapping from the OP-code of an instruction to the address of
the Microinstruction which is the starting microinstruction of
its execution microprogram

1 0 1 1 Address

Microinstruction
address

OP-code

Mapping bits 0 x x x x 0 0

0 1 0 1 1 0 0

Machine
Instruction

4 bit Opcode = specify up to 16 distinct instruction

Mapping Process : Converts the 4-bit Opcode to a 7-bit control
memory address

»1) Place a “0” in the most significant bit of the address

»2) Transfer 4-bit Operation code bits

»3) Clear the two least significant bits of the CAR

ADD Routine
AND Routine
LDA Routine
STA Routine
BUN Routine

Control
Storage

0000
0001
0010
0011
0100

OP-codes of Instructions
ADD
AND
LDA
STA
BUN

0000
0001
0010
0011
0100

.

.

.

Direct Mapping
Address

Mapping Function : Implemented by Mapping ROM or PLD. A PLD is
similar to ROM except that it uses AND and OR gates with internal
electronic fuses.the interconnection between AND, OR and outputs can
be programmed as in ROM

Subroutine
 Subroutines are program that are used by other routines to accomplish a

particular task. A subroutine can be called from any point within the main
body of the microprogram. Frequently many microprogram contain
identical section of code. Microinstruction can be saved by employing
subroutines that used common section of micro-code. Ex. The sequence
of micro operations needed to generate the effective address of the
operand for an instruction is common to all memory reference
instructions. This sequence could be a subroutine that is called from
within many other routines to execute the effective address computation.

 Design of Control Unit
The bits of microinstruction are usually divided into fields, with each field

defining a distinct, separate function. The various fields available in the
instruction format provide control bits to initiate the microoperation.

 Decoding of Microinstruction Fields :
 F1, F2, and F3 of Microinstruction are decoded with a 3 x 8 decoder
 Output of decoder must be connected to the proper circuit to initiate the

corresponding microoperation (Tab. 7-1)

F1 = 101 (5) : DRTAR (The next
clock pulse transition transfer
the content of DR(0-10) to AR)

F1 = 110 (6) : PCTAR
 Output 5 and 6 of decoder F1 are

connected to the load input of AR
(two input of OR gate)

 Multiplexer select the data from
DR when output 5 is active

 Multiplexer select the data from
AC when output 5 is inactive

 Arithmetic Logic Shift Unit
» Instead of using the gates to

generate the control signal
marked by AND, ADD, and DR
Control signal will be now come
from the output of the decoders
associated with the AND, ADD,
and DRTAC respectively.

 3 × 8 d e c o d e r

7 6 5 4 3 2 1 0

F 1

 3 × 8 d e c o d e r

7 6 5 4 3 2 1 0

F 2

 3 × 8 d e c o d e r

7 6 5 4 3 2 1 0

F 3

A r i t h m e t i c
l o g i c s h i f t

u n i t

A C

Multiplexers

A R

F r o m
P C

F r o m
D R (0 - 1 0)

0 1

L o a d

S e l e c t

C l o c k

A D D

A N D

D R T A C

L o a d

D R T A RP C T A R

From DR

 Microprogram Sequencer : Fig. 7-8
 Microprogram Sequencer select the next

address for control memory
 MUX 1

» Select an address source and route to CAR

» JMP 와 CALL의 차이점
 JMP : AD가 MUX 1의 2번을통해 CAR로전송
 CALL : AD가 MUX 1의 2번을통해 CAR로

전송되고, 동시에 CAR + 1(Return Address) 이
LOAD 신호에의해 SBR에 저장된다.

 MUX 2
» Test a status bit and the result of the test is

applied to an input logic circuit
» One of 4 Status bit is selected by Condition bit (CD)

 Design of Input Logic Circuit
» Select one of the source address(S0, S1) for

CAR
» Enable the load input(L) in SBR

M U X 1

3 2 1 0

S 1

S 0

 I n p u t
 l o g i c

I o

I 1

T

M U X 2

S e l e c t

C A R

In c r e m e n t e r

S B R

C o n t r o l m e m o r y

M i c r o o p s C D A DB R

C lo c k

T e s t

L o a d

E x t e r n a l
(M A P)

L

1

Z
S

I

 

 CAR + 1
 JMP/CALL
Mapping
 Subroutine Return

 Input Logic Truth Table : Tab. 7-4
» Input :

 I0, I1 from Branch bit (BR)
 T from MUX 2 (T)

» Output :
 MUX 1 Select signal (S0, S1)

S1 = I1I0’ + I1I0 = I1(I0’ + I0) = I1
S0 = I1’I0’T + I1’I0T + I1I0

= I1’T(I0’ + I0) + I1I0
= I1’T + I1I0

 SBR Load signal (L)
L = I1’I0T

Load SBR
I1 I0 T S1 S0 L

0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0
0 1 0 1 1 0 1 1
1 0 1 0 x 1 0 0
1 1 1 1 x 1 1 0

BR Field Input MUX 1

 CAR + 1
 JMP
 CAR + 1
 CALL
MAP
 RET

CALL

